Antibiotic resistance, virulence gene, and molecular profiles of Shiga toxin-producing Escherichia coli isolates from diverse sources in Calcutta, India
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khan, Asis | - |
dc.contributor.author | Das, S.C. | - |
dc.contributor.author | Ramamurthy, T. | - |
dc.contributor.author | Khanam, J. | - |
dc.contributor.author | Yamasaki, S. | - |
dc.contributor.author | Takeda, Y. | - |
dc.contributor.author | Nair, G. Balakrish | - |
dc.date.accessioned | 2015-04-27T02:48:12Z | - |
dc.date.available | 2015-04-27T02:48:12Z | - |
dc.date.issued | 2002 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/5712 | - |
dc.description.abstract | Abstract Antibiotic resistance, virulence gene, and molecular profiles of Shiga toxin-producing Escherichia coli (STEC) non-O157 strains isolated from human stool samples, cow stool samples, and beef samples over a period of 2 years in Calcutta, India, were determined. Resistance to one or more antibiotics was observed in 49.2% of the STEC strains, with some of the strains exhibiting multidrug resistance. The dominant combinations of virulence genes present in the strains studied were stx(1) and stx(2) (44.5% of strains) and stx(1), stx(2), and hlyA (enterohemorrhagic E. coli hemolysin gene) (19% of strains). Only 6.4% of the STEC strains harbored eae. The diversity of STEC strains from various sources was assessed by random amplification of polymorphic DNA (RAPD). STEC strains that gave identical or nearly similar DNA fingerprints in RAPD-PCR and had similar virulence genotypes were further characterized by pulsed-field gel electrophoresis (PFGE). Identical RAPD and PFGE profiles were observed in four sets of strains, with each set comprising two strains. There was no match in the RAPD and PFGE profiles between strains of STEC isolated from cows and those isolated from humans. It appears that the clones present in bovine sources are not transmitted to humans in the Calcutta setting although these strains showed evolutionary relatedness. Maybe for this reason, STEC has still not become a major problem in India | en |
dc.format.extent | 576370 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | en |
dc.publisher | J Clin Microbiol 2002 Jun;40(6):2009-15 | en |
dc.subject | Anti-bacterial agents | en |
dc.subject | Bacterial proteins | en |
dc.subject | Cattle diseases | en |
dc.subject | Drug resistance, bacterial | en |
dc.subject | Electrophoresis, gel | en |
dc.subject | Escherichia coli | en |
dc.subject | Escherichia coli infections | en |
dc.subject | Random amplified polymorphic DNA technique | en |
dc.subject | Shiga toxins | en |
dc.subject | Virulence | en |
dc.title | Antibiotic resistance, virulence gene, and molecular profiles of Shiga toxin-producing Escherichia coli isolates from diverse sources in Calcutta, India | en |
dc.type | Article | en |
Appears in Collections: | A. Original papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2002-JClinMicrobiol-2009-KhanA.pdf | 562.86 kB | Adobe PDF | View/Open Request a copy |
This item is protected by original copyright |