Application No. 24-029

Supporting Agency: If Non-ICDDR, B

Title of Study: Incidence, enterotoxigenicity, antibiogram and biochemical properties of Aeromonas hydrophila isolated from diarrheal patients

Project status: New Study

Continuation with change: No change (do not fill out rest of form)

Circle the appropriate answer to each of the following (If Not Applicable write NA).

1. Source of Population:
 (a) Full-time subjects Yes [] NA [] No []
 (b) Non-full subjects Yes [] No []
 (c) Minors or person under guardianship Yes [] No []

2. Does the study involve:
 (a) Physical risks to subjects Yes [] No []
 (b) Social risks to subjects Yes [] No []
 (c) Psychological risks to subjects Yes [] No []
 (d) Discomfort to subjects Yes [] No []
 (e) Invasion of privacy Yes [] No []
 (f) Disclosure of information damaging to subject or others Yes [] No []

3. Does the study involve:
 (a) Use of records, hospital, medical, death, birth or other Yes [] No []
 (b) Use of fetal tissue or abortus Yes [] No []
 (c) Use of organs or body fluids Yes [] No []

4. Are subjects clearly informed about:
 (a) Nature and purposes of study Yes [] No []
 (b) Procedures to be followed including alternatives used Yes [] No []
 (c) Physical risks Yes [] No []
 (d) Sensitive questions Yes [] No []
 (e) Benefits to be derived Yes [] No []
 (f) Right to refuse to participate or withdraw from study Yes [] No []
 (g) Confidential handling of data Yes [] No []
 (h) Compensation &/or treatment where there are risks of privacy involved in any particular procedure Yes [] No []

We agree to obtain approval of the Ethical Review Committee for any changes involving the rights and welfare of subjects before making such change.

Ziau Rahman 13 Jul 1984

Principal Investigator

Trainee Investigator (If any)
SECTION I - RESEARCH PROTOCOL

1. TITLE
 : Incidence, enterotoxigenicity, antibiogram, and biochemical properties of Aeromonas hydrophila isolated from diarrhoeal patients.

2. PRINCIPAL INVESTIGATOR
 : Md. Zeaur Rahim

3. CO-INVESTIGATORS
 : Dr. Nigar S. Shahid
 : Dr. A. S. M. Hamidur Rahman

4. CONSULTANT
 : Dr. K. M. S. Aziz and Prof. S.C. Sanyal

5. STARTING DATE
 : 1st of August 1984

6. COMPLETION DATE
 : 31st August 1985

7. TOTAL DIRECT COST
 : US$ 5,313.00

8. SCIENTIFIC PROGRAM HEAD

 This protocol has been approved by Disease Transmission Working Group.

Signature of the Scientific Programme Head: [Signature]

Date: 26/4/84
9. **ABSTRACT SUMMARY:**

Incidence and seasonality of *Aeromonas hydrophila* associated diarrhoea will be studied in 4% surveillance patients. The isolated *A. hydrophila* strains will be tested for enterotoxicity, cytotoxicity, drug resistance pattern against common antibiotics and biochemical properties. Attempts will be made to explore the existence of any correlation between enterotoxicity and biochemical properties so that enterotoxigenic strains may be detected by simple biochemical tests. The antibiotic resistance pattern will be examined to delineate the feasibility of developing a selective medium for isolation of the organism inhibiting other enterobacteria.
A. INTRODUCTION

1. Objectives:

To find out the incidence and seasonality of *A. hydrophila* associated diarrhoea. Further, the enterotoxicity of the strains and biochemical behaviour will be studied to explore the possibility of any correlation between these characters and their antibiogram will be done to examine the feasibility of developing a selective medium for isolation of this organism inhibiting other enterobacteria.

2. Background:

Aeromonas hydrophila is regarded as a pathogen in different vertebrates. In cold blooded animals, this bacterium causes a variety of diseases such as stomatitis, pneumonia (29) and septicemia (10) in snakes and red leg disease in frog (38). *A. hydrophila* has been incriminated in causing death of a large number of fish and alligators in lake appoke (54). This bacterium has also been isolated from the intestines of the American alligators (*Alligator mississippiensis*) which died without showing any symptom of disease (24). It has been reported to cause bovine abortion (61). In fish, it reportedly can cause furunculosis and has been isolated from kidneys and intestines of both healthy and moribund fish (35). *Aeromonas* induced disease in reptiles has been reviewed by Marcus (36). In human beings, this bacterium produces a variety of diseases such as septicemia (14, 46), meningitis (46), endocarditis (13), corneal ulcer (23), peritonitis (50) and wound infection (28, 31, 54).

Rosnner (1964) isolated *Aeromonas* from feces of a patient with abdominal pain, fever and bloody stool (49), which gave an indication that *A. hydrophila*
may be an etiological agent of diarrhoea. von Graevenitz and Mensch (1968) isolated \textit{A. hydrophila} from stools of patients with and without diarrhoea (59). During recent years, the role of \textit{A. hydrophila} as an etiological agent of diarrhoea has been confirmed by various workers (6, 8, 11, 25, 26, 43, 45). The rate of isolation of \textit{A. hydrophila} from diarrhoeal stool varies in different countries. In India, Chatterjee and Neogy (11), Sanyal et al. (52), and Bhat et al. (6) isolated \textit{Aeromonas} and \textit{Plesiomonas} in 5.0% cases of diarrhoea in Calcutta, Varanasi and Vellore respectively. Gracey et al. (1982) reported the isolation of \textit{Aeromonas} spp. in 10% of 500 children attending hospital with diarrhoea in Perth, West Australia. Similar isolation rate (10%) has been found among the children with diarrhoea in Jakarta, Indonesia (25). It has also been isolated from asymptomatic controls in Thailand (43), United States (8, 59), Australia and Indonesia (25).

In ICDDR,B surveillance system, all the known etiological agents of diarrhoea are being identified routinely. From the surveillance system we know the incidence and seasonality of rotavirus, Shigella, enterotoxigenic \textit{Escherichia coli} and \textit{Vibrio cholerae} O1 (57). \textit{Plesiomonas shigelloides} has also been reported from ICDDR,B (30). According to the surveillance reports, the rate of isolation of \textit{A. hydrophila} is very low (less than 1.0%). Gracey et al. (1982) reported that in Perth, West Australia, \textit{Aeromonas} associated diarrhoea among the children is in the peak in the summer months (25).

It is established that, gastroenteritis caused by \textit{Aeromonas} is due to elaboration of enterotoxin from this bacterium. Sanyal, Singh and Sen (1975) first demonstrated enterotoxicity of \textit{A. hydrophila} strains isolated from diarrhoeal stools and environment (51). They also demonstrated that cell-free culture filtrate of the organism can cause fluid accumulation in rabbit ileal loop (1, 2), increase in permeability of rabbits skin (17, 19) purified the enterotoxin up to electrophoretic homogeneity (18), cloned the enterotoxin
gene (58) & also showed cyclic AMP mediated enterotoxicity (16). Most of the observations were later confirmed by different workers (7, 60). Besides elaboration of additional toxic factors such as haemolysin (60) aerolysin (7), cytotoxin (15) by this organism have been reported.

Man and other animals acquire infections with drug resistant bacteria from the environment (3, 4). Isolation of drug resistant A. hydrophila from human infections has been reported (21, 22, 40, 41). Clinical isolates usually acquire resistance due to treatment of diseases with synthetic chemotherapeutic agents and antibiotics. In Bangladesh, environmental isolates of A. hydrophila showed resistance against ampicillin, septrin, chloramphenicol, neomycin, polymixin B, vancomycin and streptomycin (unpublished data). But we do not know the resistance pattern of A. hydrophila strains isolated from diarrhoeal stools in Bangladesh.

Aeromonas shares various characteristics with the members of Enterobacteriaceae and Vibrionaceae. These common characteristics and the lack of a selective isolation medium are the two main problems in isolation of A. hydrophila. Eddy (1960) used peptone water containing horse blood (5%) and dialized skimmed milk (20) for isolation of A. hydrophila. Other workers like Schubert (1967), Shotts and Rimbler (1973), Rippey and Cabelli (1979) and Rogol (1979) also formulated various media (47, 48, 53, 56). None of them is satisfactory, because the medium of Schubert cannot pick up all strains of the species, that of Shotts and Rimbler can not differentiate Vibrio parahaemolyticus and Aeromonas. Rogol's medium is impregnated with ampicillin on which only ampicillin resistant A. hydrophila strains can grow. Recently we have isolated a number of A. hydrophila that are sensitive to ampicillin (unpublished data). So, the use of Rogol's medium has the possibility to miss ampicillin sensitive strains of A. hydrophila. These data indicate that there is a need to formulate a selective medium for better isolation of
A. hydrophila. In this work we will use Peptone Beef Extract, Glycogen agar (38) which is without added antibiotic for the isolation of **A. hydrophila.**

Morphologically aeromonads are confused with the members of **Enterobacteriaceae.** So, the isolation rate may be low in some cases. In the environmental samples (river and pond water, and fish ulcer) the isolation rate is very high (95-100%). So, the low rate (≥1%) of isolation from the diarrhoeal patient is surprising. In ICDDR,B surveillance system, for isolation of **Aeromonas** stool samples/rectal swabs were directly plated on MacConkey's agar. Higher rate of isolation may be possible by plating the stool samples/rectal swabs on more than one plating media before and after enrichment in bile peptone and selenite F broth (6).

Studies of different workers (7,12) as well as those conducted in our laboratory indicated that enterotoxigenicity may be related to certain biochemical characters including haemolysin production. There are also indications (12) that clinical isolates may differ in biochemical behaviour with environmental isolates. It would be interesting to study the correlation between enterotoxigenicity and biochemical behaviour of clinical and environmental isolates.

3. Rationale:

The rationale underlying this research is to find out the actual rate of **A. hydrophila** associated diarrhoea in Bangladesh, to test whether all of them are enterotoxigenic, to find out if there is any correlation between enterotoxin production by them and their biochemical properties, so that a simple indicator can be developed for detection of enterotoxic strains; and to see drug sensitivity pattern to have simple guidance for treatment as well as explore the feasibility of developing a selective medium incorporating an antibiotic to inhibit other enteric bacteria.
B. SPECIFIC AIM

The specific aim of this research is-

1. To find out the incidence and seasonality of *Aeromonas hydrophila* associated diarrhoea.

2. To see whether the rate of isolation increases using selective media following enrichment of the stool/rectal swab.

3. To study the comparative biochemical behaviour of clinical and environmental isolates and their correlation with enterotoxin.

4. To study the comparative drug sensitivity pattern of the environmental and clinical isolates and explore the feasibility of developing a better selective medium incorporating an antibiotic to inhibit other enterobacteria.

MATERIALS AND METHODS:

Isolation and identification of *Aeromonas hydrophila*: stool samples/rectal swabs of 4% surveillance patients will be streaked on MacConkey's agar plate and peptone beef extract glycogen agar media before and after enrichment in bile peptone and selenite broth (6) and incubate the plates at 37°C. After overnight incubation characteristic aeromonad colonies will be inoculated in KIA, MIU, Citrate, Lysine, Ornithine decarboxylase and Arginine dihydrolase, sensitivity to O/129, V-P reaction, fermentation of mannitol and inositol, growth in 0% and 8% NaCl. Oxidase test will be done from growth on KIA and one colony of identified aeromonad strain will be preserved in glycerol broth at -20°C for further studies.
Drug sensitivity test:
All the strains isolated from the patient and equal number of environmental isolates will be tested for sensitivity against common antibiotics following single antibiotics disc method. Among antibiotics: ampicillin, chloramphenicol, tetracycline, streptomycin, neomycin, trimethoprim-sulfamethoxasole, gentamicin, erythromycin novobiocine and vancomycin will be use.

Test of enterotoxicity, correlation between their properties and other biochemical characters:

Enterotoxicity of *A. hydrophila* strains correlates with haemolysin production by them (Rahim et al. unpublished data). Further, lysine decarboxylase and VP reactions have also been correlated with enterotoxin. All the strains will be tested for the presence of haemolysin on blood agar plate containing 5.0-7.0% sheep blood, and every third haemolytic strain will be tested for enterotoxicity. Lysine decarboxylase and VP will be done routinely for identification of *A. hydrophila*. The environmental isolates for comparison of antibiogram, enterotoxicity and biochemical properties with those of clinical isolates will be used from our laboratory stock.

Aeromonas enterotoxin has been detected in various models and the present study will be conducted with Bangladeshi strains using following models.

Heat labile enterotoxin

a. Adult rabbit ileal loop test (63)
b. Skin permeability test and (62)
c. Chinese hamster ovarian cell line (CHO) (65)

Heat stable enterotoxin:

Test for heat stable enterotoxin will be done in "suckling mice assay". (64)
ABSTRACT SUMMARY

Incidence and seasonality of *Aeromonas hydrophila* associated diarrhoea will be studied in 4% surveillance patients. The isolated *A. hydrophila* strains will be tested for enterotoxicity, cytotoxicity, drug resistance pattern against common antibiotics and biochemical properties. Attempts will be made to explore the existence of any correlation between enterotoxicity and biochemical properties so that enterotoxigenic strains may be detected by simple biochemical tests. The antibiotic resistance pattern will be examined to delineate the feasibility of developing a selective medium for isolation of the organism inhibiting other enterobacteria.

1. Subject population
 The study will involve 4% surveillance patient for stool/rectal swab.

2. Risks
 Not applicable

3. Protection against risk
 Not applicable

4. Confidentiality
 Not applicable

5. Privacy
 Not applicable

6. Interview
 Not applicable

7. Benefit
 This study will help better management of patients.

8. Use of hospital records
 Hospital records will be used.
A. DETAILED BUDGET:

1. Personnel Services:

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>% or no. day</th>
<th>Annual Salary</th>
<th>Project Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md. Zeaur Rahim</td>
<td>Principal Investigator</td>
<td>50%</td>
<td>18,000</td>
<td></td>
</tr>
<tr>
<td>Dr. Nigar S. Shahid</td>
<td>Co-investigator</td>
<td>5%</td>
<td>7,000</td>
<td></td>
</tr>
<tr>
<td>Dr. A.S.M. Hamidur Rahman</td>
<td>Co-investigator</td>
<td>10%</td>
<td>8,000</td>
<td></td>
</tr>
<tr>
<td>Md. Ashraf Ali</td>
<td>Lab. Attendant</td>
<td>20%</td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>Dr. K.M.S. Aziz</td>
<td>Consultant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. S.C: Sanyal</td>
<td>Consultant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub Total: 38,000.

2. SUPPLIES AND MATERIALS:

<table>
<thead>
<tr>
<th>Amount Required</th>
<th>Unit Cost</th>
<th>Project Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture media</td>
<td></td>
<td>12,000</td>
</tr>
<tr>
<td>Millipore sets</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Chemicals and reagents</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>Animals</td>
<td>Amount Required</td>
<td>Unit Cost</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Adult albino Rabbit</td>
<td>100</td>
<td>10 (US$)</td>
</tr>
<tr>
<td>Suckling mice</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Tissue Culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHO</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tests each</td>
<td></td>
</tr>
</tbody>
</table>

3. **EQUIPMENT:**
Nil

4. **PATIENT HOSPITALIZATION**
Nil

5. **OUT PATIENT CARE**
Nil

6. **ICDDR,B TRANSPORT**
Nil

7. **TRAVEL AND TRANSPORTATION**
Nil

8. **TRANSPORTATION OF THINGS**
Nil

9. **RENT, COMMUNICATION**
Nil

10. **PRINTING & REPRODUCTION**
3,000

11. **OTHER CONTRACTUAL SERVICES**
Nil

12. **CONSTRUCTION, RENOVATION ALTERATION**
Nil
Budget Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>Taka</th>
<th>Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Personal</td>
<td>38,000</td>
<td>2,300</td>
</tr>
<tr>
<td>2. Supplies</td>
<td>17,000</td>
<td></td>
</tr>
<tr>
<td>3. Equipment</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>4. Hospitalization</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>5. Outpatient</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>6. ICDDR,B Transport</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>7. Travel persons</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>8. Transportation of things</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>9. Rent and Communication</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>10. Printing & Reproduction</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>11. Contractual services</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>12. Construction</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>58,000</td>
<td>2,300</td>
</tr>
</tbody>
</table>

\[\text{US$ } 2,320 + 2300.00 = 4,620 \]

Overhead charge

\[\text{US$ } - 693.00 \]

Grand Total:

\[\text{US$ } 5,313.00 \]
REFERENCES

an evaluation of biological assay. J. Clin. Pathol. 14:

hydrophobicity of Aeromonas hydrophila. In S.F.H. Kiwa (ed). Enterotoxi-
genic bacteria from clinical ailment and environmental sources.
Uppsala, Sweden.

hydrophila: ecology, toxigenicity of isolates from an estuary. J.

of mobile Aeromonas species isolated from healthy and moribund fish.

Assoc. 159: 1628-1631,

31:1553-1555.

38. Miles, E.M., and A.A. Miles, 1951. The identity of Proteus hydrophila,
Bergey et al. and proteus melanovogenes Miles and Halnan, and their
relation to the genus Aeromonas Klyver and van Niel. J. Gen. Micro-
obiol. 5:298-306.

conditions. Bull. WHO. 28:

psenodomonas spp. and Aeromonas hydrophila to trimethoprim and sulfa

